# Molecular Orbital Calculations for Norbornene and Some Related Nonclassical Intermediates 

H. O. Ohorodnyk and D. P. Santry<br>Contribution from the Department of Chemistry, McMaster University, Hamilton, Ontario, Canada. Received March 8, 1969


#### Abstract

The geometrical and electronic structures of norbornene and its 7 ions and 7 radical have been investigated using approximate SCF-MO theory. The results from these investigations were used to discuss whether the structures of the ions and radical are classical or nonclassical. It was found that under electron delocalization criterion the structure of the 7 anion is classical whereas the structures of the 7 radical and 7 cation are equally nonclassical. However, using the nonclassical stabilization energy as a criterion, the 7 radical was found to be intermediate between the 7 anion and the 7 cation. This suggests that nonclassical stabilization energy is the better criterion for nonclassical structures.


The molecular orbital calculations of Winstein, ${ }^{1}$ Roberts, ${ }^{2}$ and their coworkers have been of fundamental importance to the development of current theories of the bonding in nonclassical ions. These calculations, for example, demonstrated the importance of the 1-4 interaction to the stabilization of nonclassical ions which contain the homoallyl group. Important results have also been obtained by Hoffmann ${ }^{3}$ and Klopman ${ }^{4}$ which have contributed significantly to this field.

Although the above studies have yielded valuable qualitative descriptions of the bonding in these systems, they are severely limited at the semiquantitative level by the fact that the geometries of nearly all nonclassical intermediates are completely unknown. In view of the sensitivity of molecular orbital calculations to changes in molecular geometry, this lack of experimental data tends to detract from the credibility of even the qualitative results from these calculations. Klopman ${ }^{4}$ has attempted to remedy this situation by repeating his calculations for two or three intuitively chosen structures. Although this represents an improvement over calculations based on a single structure, the only satisfactory solution to this problem is to use molecular orbital theory to calculate the necessary structural data for the molecule under investigation. Once the geometry has been established, the results from the molecular orbital calculation can be used to discuss the bonding in the ion. Experiences with semiempirical molecular orbital methods suggest that they are capable of yielding very satisfactory geometrical data, but unfortunately the large number of internal degrees of freedom ( $3 N-$ 6 ), for molecules of chemical interest, renders this approach too time consuming. Clearly, some approximation must be devised which will limit the number of geometrical parameters which need to be calculated. In this paper we report such a scheme for molecules of the norbornene series.

A second, but probably less serious, problem is the neglect of electron repulsion in all of the calculations

[^0]discussed above. Although this type of approximation has been shown to be satisfactory for neutral nonpolar molecules, it tends to lead to unsatisfactory charge distributions for ions, and is completely unsatisfactory for radicals. As ions and a radical are included in the list of molecules under discussion, all of the calculations were based on an approximate self-consistent field (SCF) method.

## Systematic Treatment of Molecular Geometry

Although the structure of the norbornene molecule could in principle be calculated by minimizing the molecular energy with respect to ( $3 N-6$ ) internal coordinates, the computation time required would be prohibitively long. Fortunately, a reasonable guess can be made for many of the bond lengths and bond angles of the $\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{C}_{6}$ skeleton, so that the calculation can be drastically curtailed. However, some care must be exercised in the choice of the structure for this fragment, otherwise a spurious energy minimum could be calculated which would lead to the prediction of a structure for the molecule which is only metastable with respect to the equilibrium structure. In view of this possibility the structure chosen for the $\mathrm{C}_{1}-\mathrm{C}_{6}$ skeleton will be specified in some detail.

The method proposed for calculating the geometry of the norbornene series of molecules is based on the calculation of the four bond angles $\theta_{1}, \theta_{2}, \theta_{3}$, and $\theta_{4}$ shown in Figure 1. Essentially, the molecular energy is calculated for a systematically chosen set of values for these variables and then minimized graphically. It is clear from Figure 1 that the positions of the atoms in the $\mathrm{C}_{1}-\mathrm{C}_{6}$ skeleton depend on both $\theta_{1}$ and $\theta_{4}$, and that some means must be devised of calculating their coordinates in terms of these angles. The method used in the present calculation is as follows.

A value is assigned to $\theta_{1}$ and the coordinates of atoms $\mathrm{C}_{7}, \mathrm{C}_{1}$, and $\mathrm{C}_{4}$ are calculated using a carbon-carbon bond length of $1.54 \AA$. The coordinates of $\mathrm{C}_{7}$ can then be adjusted for changes in $\theta_{2}$. Using the coordinates of $\mathrm{C}_{1}$ and $\mathrm{C}_{4}$ the coordinates of carbon atoms 2,3 , 5 , and 6 are calculated by applying the conditions that


Figure 1. Molecular axes for the norbornene series of molecules.
the angle between the bonds $1-6$ and $1-2$ is bisected by the $x z$ plane and has the value assigned to $\theta_{4}$, and that the $\mathrm{C}_{2}-\mathrm{C}_{3}$ and $\mathrm{C}_{5}-\mathrm{C}_{6}$ bond lengths are 1.33 and $1.54 \AA$, respectively. The coordinates of atoms 3 and 5 are calculated using the $y z$ reflection plane. The coordinates of $\mathrm{H}_{1}$, the proton attached to $\mathrm{C}_{1}$, are calculated by assuming that the angles between the $\mathrm{H}_{1}-\mathrm{C}_{1}$ bond and the $C_{1}-C_{4}$ and $C_{1}-C_{6}$ bonds are tetrahedral. The coordinates for the proton $\mathrm{H}_{2}$ are calculated on the assumption that it lies in the $\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3}$ plane and the $\mathrm{C}_{2}-\mathrm{H}_{2}$ bond bisects the $\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{3}$ bond angle. A bond length of $1.09 \AA$ is assumed for all $\mathrm{C}-\mathrm{H}$ bonds. The coordinates of $\mathrm{H}_{3}$ are obtained by reflection. The coordinates of the exo and endo $\mathrm{C}_{6}$ protons are calculated on the assumption that the angle between the $\mathrm{C}_{6}{ }^{-}$ $\mathrm{H}_{6}{ }^{\text {endo }}$ and the $\mathrm{C}_{6}-\mathrm{H}_{6}{ }^{\text {exo }}$ bonds is tetrahedral, that the $\mathrm{H}_{6}{ }^{\text {exo }} \mathrm{C}_{6} \mathrm{H}_{6}{ }^{\text {endo }}$ plane bisects the angle $\mathrm{C}_{5} \mathrm{C}_{6} \mathrm{C}_{1}$, and that the protons are symmetrically situated above and below the $\mathrm{C}_{5} \mathrm{C}_{6} \mathrm{C}_{1}$ plane. The coordinates for the corresponding $\mathrm{C}_{\overline{\mathrm{j}}}$ protons are obtained by reflection.

## Molecular Orbital Calculation

All of the calculations reported here are based on the CNDO (complete neglect of differential overlap) approximation ${ }^{5,6}$ to the full SCF (self-consistent field) equations of Roothaan. ${ }^{7}$ Calculations for the radical were based on the Pople-Nesbet approximate openshell method. ${ }^{8}$ A complete specification of this method together with a discussion of the approximations are given in references. ${ }^{5,6.8}$ These calculations were carried through to a level of self-consistency where the energies were accurate to the sixth decimal place.

The calculation of the geometry was organized as follows. The angle $\theta_{1}$ was first calculated, by minimizing the molecular energy, assuming $\theta_{2}=\theta_{3}=0$, and $\theta_{4}=109^{\circ}$. (In the case of the norbornene molecule the initial value of $2 \theta_{3}=109^{\circ} 27^{\prime}$.) Using the computed value for $\theta_{1}, \theta_{2}$ was calculated, then $\theta_{4}$, and finally $\theta_{3}$. With the new values for $\theta_{2}, \theta_{3}$, and $\theta_{4}, \theta_{1}$ was re-
(5) J. A. Pople, D. P. Santry, and G. A. Segal, J. Chem. Phys., 43, S129 (1965).
(6) J. A. Pople and G. A. Segal, ibid., 44, 3289 (1966).
(7) C. C. J. Roothaan, Rev. Mod. Phys., 23, 69 (1951).
(8) J. A. Pople and R. K. Nesbet, J. Chem. Phys., 6, 571 (1954).
calculated. This process was repeated until an absolute minimum in energy with respect to all four angles was obtained. In the present calculations the angles were calculated to within 2 or $3^{\circ}$.

## Results for Norbornene, 7-Norbornene Cation, Anion, and Radical

a. Geometrical Structures. As the above method is intended for the calculation of the geometry of molecules which are not amenable to experimental investigation, it is desirable to test it against molecules of known structure. Two molecules which are suitable for this purpose are norbornene and norbornane. Although the structures of these two molecules are unknown, the structures of substituted norbornenes and norbornanes have recently been determined by X-ray analysis. ${ }^{9,10}$ The substituents are generally a $p$-bromosulfonate group attached to $\mathrm{C}_{7}$ and a ring system fused to $\mathrm{C}_{2}-\mathrm{C}_{3}$ or $\mathrm{C}_{5}-\mathrm{C}_{6}$. Unfortunately, our calculations suggest that these types of substituents could lead to a significant change in the molecular geometry. Nevertheless these data do provide a good semiquantitative check on our method.

A value of $94^{\circ}$ was calculated for the bridge angle $\left(\theta_{1}\right)$ in norbornane, which agrees quite well with the experimental value of $97^{\circ}$ for anti-8-tricyclo[3.2.1.0 ${ }^{2.4}$ ]octyl $p$ bromobenzenesulfonate. ${ }^{10}$ A value of $89^{\circ}$ was calculated for the bridge angle $\left(\theta_{1}\right)$ for norbornene which agrees fairly well with the experimental value of $96^{\circ}$ for norboramide. ${ }^{9}$

The energy surfaces for the ions and radical were found to be complicated functions of all four angles, such that the independent calculation of any one angle could lead to a significant error. For example, the independent calculation of $\theta_{1}$ and $\theta_{2}$ yielded values of 108 and $46^{\circ}$, respectively, whereas the final values are 101 and $51^{\circ}$.

The theoretical structures for norbornene, the 7 ions, and the 7 radical are given in Table I. The significant

Table I. Theoretical Bond Angles for Norbornene and Its 7 Ions and 7 Radical

|  | Norbornene | -Mol 7 anion -Angle, | 7 radical $^{b}$ | 7 cation |
| :---: | :---: | :---: | :---: | :---: |
| $\theta_{1}$ | 89 | 88 | 95 | 101 |
| $\theta_{2}$ | -2 | 5 | 55 | 51 |
| $\theta_{3}$ | 53 | 58 | 26 | 12 |
| $\theta_{4}$ | $\left(109^{\circ} 27^{\prime}\right)^{\text {a }}$ | 105 | 113 | 112 |

${ }^{a}$ Assumed. ${ }^{b}$ The asymmetric structure in which $C_{7}$ was bent toward $C_{2}$ was also investigated, but it was found to be of higher energy than the above structure.
differences found in the structures for this series of closely related molecules can be understood in terms of a modified three-center bond between $\mathrm{C}_{7}, \mathrm{C}_{2}$, and $\mathrm{C}_{3}$. The molecular orbitals associated with this bond are modified by relatively small yet significant contributions from $2 p$ atomic orbitals centered on atoms $C_{1}$ and $\mathrm{C}_{4}$. These contributions are such as to give the $\mathrm{C}_{1} \mathrm{C}_{2}$ and $\mathrm{C}_{3} \mathrm{C}_{4}$ bonds considerable bonding $\pi$ character in the bonding three-center molecular orbital, and consider-
(9) T. Sato, M. Shiro, and H. Koyama, J, Chem. Soc., B, 935 (1968). (10) A. C. Macdonald and J. Trotter, Acta Cryst., 18, 243 (1965).

Table II. Net Atomic Charges Computed for Norbornene and lts 7 Ions and 7 Radical

| Atom | Norbornene | Molecule |  | 7-Norbornene Cation |
| :---: | :---: | :---: | :---: | :---: |
|  |  | 7-Norbornene Anion | 7-Norbornene Radical |  |
| $\mathrm{H}_{1}$ | -0.026 | -0.109 | -0.001 | 0.083 |
| $\mathrm{H}_{4}$ | 0.005 | -0.064 | 0.006 | 0.090 |
| $\mathrm{H}_{3}$ exo | -0.009 | -0.051 | -0.021 | 0.041 |
| $\mathrm{H}_{5}$ endo | -0.008 | -0.072 | -0.012 | 0.035 |
| $\mathrm{H}_{\text {: }}$ anti | -0.016 | $-0.120$ | 0.021 | 0.083 |
| $\mathrm{H}_{3} \mathrm{syn}$ | -0.009 |  |  |  |
| $\mathrm{C}_{1}$ | 0.046 | 0.083 | -0.045 | 0.009 |
| $\mathrm{C}_{2}$ | -0.023 | $-0.037$ | -0.078 | 0.095 |
| $\mathrm{C}_{5}$ | 0.012 | 0.014 | 0.020 | 0.010 |
| C; | 0.029 | $-0.407$ | 0.242 | 0.191 |

able antibonding $\pi$ character in the lowest antibonding three-center molecular orbital.

The highest occupied level in the 7 cation is found to be the bonding orbital associated with the three-center bond. The corresponding antibonding orbitals are vacant. As a result of the occupation of this orbital the $\mathrm{C}_{7}$ carbon bends toward the double bond to a point where the energy gained by strengthening the threecenter bond is offset by the increase in strain energy for the remainder of the molecule. This change in $\theta_{2}$ is of course accompanied by significant changes in the other bond angles $\theta_{1}, \theta_{2}$, and $\theta_{4}$, According to the present calculations the final value for $\theta_{2}$ is $51^{\circ}$ and corresponds to a high degree of bonding between $\mathrm{C}_{7}, \mathrm{C}_{2}$, and $\mathrm{C}_{3}$. An interesting feature of this ion is the existence, according to the present calculations, of two equilibrium positions for the $\mathrm{C}_{1}-\mathrm{C}_{6}-\mathrm{C}_{5}-\mathrm{C}_{4}$ bridge. These two bridge positions are of almost equal energy and are separated by a small barrier. The bond angles $\theta_{1}, \theta_{2}, \theta_{3}$, and $\theta_{4}$ for this second structure are $94,37,15$, and $135^{\circ}$, respectively.

According to the present calculations, the unpaired electron in the 7 radical occupies the lowest antibonding orbital of the three-center bond. The highest doubly occupied level is found to be the corresponding bonding molecular orbital. The geometrical effects of adding a single electron to the antibonding three-center orbital do not appear to be very great. Although the nonclassical stabilization energy (next section) is decreased in magnitude, suggesting a significant weakening of the threecenter bond, $\theta_{2}$ actually increases slightly rather than decreasing as expected. One of the reasons for this is probably related to the changes in the other bond angles, $\theta_{1}, \theta_{3}$, and $\theta_{4}$, between the radical and cation. Our calculations show, for example, that the equilibrium value of $\theta_{2}$ is very sensitive to $\theta_{1}$ and $\theta_{3}$.

The addition of another electron to the antibonding orbital, to form the 7 anion, gives an over-all antibonding character to this bond. As a result, the equilibrium geometry of the anion is very close to the parent molecule, norbornene. The highest occupied orbital is strongly localized on $\mathrm{C}_{7}$ and is very close to $\mathrm{sp}^{3}$ in character. This is reflected by the large value of $58^{\circ}$, approximately half the tetrahedral angle, calculated for $\theta_{3}$.
b. Charge Densities and Stabilization Energies. The charge densities for all of the molecules under discussion are given in Table 1I. The spin density distribution for the 7 radical is given in Table III.

Table III. Spin Densities for the 7 Radical

| Atom | $\mathrm{C}_{1}$ | $\mathrm{C}_{2}$ | $\mathrm{C}_{7}$ | $\mathrm{C}_{7}$ |
| :---: | :---: | :---: | :---: | :---: |
| Density | 0.09 | 0.44 | 0.02 | -0.09 |

A particularly interesting question, which the present calculations should help to answer, is whether the 7 ions and 7 radical have classical or nonclassical structures. According to Bartlett's definition, ${ }^{11}$ a nonclassical ion (or radical) has delocalized bonding $\sigma$ electrons in its ground state. An almost perfect example of a classical ion under this definition is provided by the 7 anion. The lone-pair electrons in this ion occupy an orbital which is almost completely localized on $\mathrm{C}_{7}$ and which is almost $\mathrm{sp}^{3}$ in character. Thus the electron distribution in this ion bears a close resemblance to that of norbornene. On the other hand, the 7 anion and 7 radical are almost ideal nonclassical systems under Bartlett's definition. There are $\sigma$ electrons in both of these molecules strongly delocalized over atoms $\mathrm{C}_{7}, \mathrm{C}_{1}$, $\mathrm{C}_{2}, \mathrm{C}_{3}$, and $\mathrm{C}_{4}$. The delocalization over atoms $\mathrm{C}_{1}$ and $\mathrm{C}_{4}$ is strongest in the 7 cation, and is the result of the bonding $\pi$ character which the bonding three-center molecular orbital gives to the $\mathrm{C}_{1}-\mathrm{C}_{2}$ and $\mathrm{C}_{4}-\mathrm{C}_{3}$ bonds. In the case of the radical this is diminished by the antibonding $\pi$ character of the antibonding three-center orbital. The high degree of $\sigma$-electron delocalization in the radical is reflected by the high spin densities calculated for atoms $\mathrm{C}_{2}$ and $\mathrm{C}_{3}$, and the small spin density for atom $\mathrm{C}_{7}$.

Another property of considerable interpretive interest is the nonclassical stabilization energy. It is difficult to define this quantity theoretically, but we may approximate it by the quantity $W$, where $W=$ energy of ion or radical calculated at its equilibrium geometry minus the energy of ion or radical calculated at the equilibrium geometry of the parent molecule.

$$
W=E_{\text {equilibrium }}-E_{\text {parent }} \text { (always negative or zero) }
$$

This definition is appropriate since the $\sigma$ electrons are usually localized for the parent geometry, and it is the delocalization of the $\sigma$ electrons which is generally responsible for any significant change in geometry between parent molecule and the ion or radical. Clearly, a large negative stabilization energy will facilitate the formation of the intermediate and hence result in a strongly accelerated reaction.

The nonclassical stabilization energies for the 7 cation, 7 radical, and 7 anion are respectively $-8,-3$, and -1 V . Thus although the 7 cation and 7 radical are equally nonclassical under Bartlett's definition, the 7 radical in fact appears to fall midway between the strongly nonclassical ion, the 7 cation, and the almost ideal classical ion, the 7 anion, in stabilization energy. These results are in keeping with the chemistry of these intermediates.

Acknowledgment. We thank the National Research Council of Canada for financial support.
(11) P. D. Bartlett, "Non-Classical Ions," W. A. Benjamin, Inc., New York, N. Y., 1965, p V.


[^0]:    (1) R. J. Piccolini and S. Winstein, Tetrahedron Suppl, 2, 423 (1963).
    (2) M. E. H. Howden and J. D. Roberts, ibid., 2, 403 (1963).
    (3) R. Hoffimann, J. Am. Chem. Soc., 86, 1259 (1964).
    (4) G. Klopman, ibid., 91, 89 (1969).

